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Abstract. We address the question whether the cut-off dependence, which has to be introduced in order
to properly define the Lippmann-Schwinger equation for the one-pion exchange potential plus local (δ-
function) potentials, can be removed (up to inverse powers of it) by a suitable tuning of the various (bare)
coupling constants. We prove that this is indeed so both for the spin singlet and for the spin triplet
channels. However, the latter requires, in the limit when the cut-off is taken to infinity, such a strong
cut-off dependence of the coupling constant associated to the non-local term which breaks orbital angular
momentum conservation, that the renormalized amplitude lacks from partial-wave mixing. We argue that
this is an indication that this term must be treated perturbatively.

PACS. 03.65.Nk Scattering theory – 11.10.Gh Renormalization – 13.75.Cs Nucleon-nucleon interactions
(including antinucleons, deuterons, etc.) – 21.30.Fe Forces in hadronic systems and effective interactions

1 Introduction

Since the original suggestion by Weinberg [1] that the nu-
clear forces could be understood within the framework of
effective field theories (EFT), there has been an increas-
ing interest in the subject (see [2] for recent reviews). A
key ingredient of the EFT formalism is that the cut-off
dependence which is introduced in order to smooth out
ultraviolet (UV) singularities can be absorbed by suit-
able counterterms, and hence any dependence on physical
scales much higher than the ones of the problem at hand
can be encoded in a few (unknown) constants. In order
to achieve this in a systematic manner, counting rules are
also necessary.

Weinberg’s suggestion consisted of two steps. The first
one was calculating the nucleon-nucleon (NN) potentials
order by order in Chiral Perturbation Theory (χPT) from
the Heavy Baryon Chiral Lagrangian (HBχL) [3]. The
second one introducing the potentials thus obtained in
a Lippmann-Schwinger (LS) equation. There is no doubt
that the first step can be carried out within an EFT frame-
work: the renormalized NN potentials are known at lead-
ing, NL, NNL [4,5] and NNNL order [6], and isospin break-
ing terms have also been taken care of [7]. The second step
however is delicate. The potentials obtained in the first

a e-mail: dolors@ecm.ub.es
b e-mail: soto@ecm.ub.es

step are increasingly singular at short distances as we rise
the order of χPT they are calculated. Hence the introduc-
tion of a regulator in the LS equation is compulsory. Since,
even with the leading-order (LO) potential, the LS equa-
tion can only be solved numerically, it is not clear that
the scattering amplitude thus obtained is cut-off indepen-
dent. This is so even for the successful fits [4,5] to different
partial amplitudes, where the cut-off is regarded as a vari-
ational parameter close to the last scale integrated out. We
present here a proof that this cut-off can be removed from
the LO (in the χPT counting) NN interaction if we tune
properly the coupling constants of the potential. However,
for this to be so we also have to tune the coupling constant
of a non-local potential in the triplet channel. Even then,
the only solution we find turns out to be physically un-
acceptable. Nevertheless, the insight on scaling so gained
enables us to put forward a new proposal of counting rules
where, coming back to standard procedures, divergences
are fully absorbed by local counterterms.

As EFTs have been mainly used in a perturbative
framework, it is far from obvious how the two main
features of them, namely renormalizability and counting
rules, must be implemented in a non-perturbative one. Al-
though in this work we shall primarily address the ques-
tion of renormalizability, we would like to start by making
a remark on counting rules, which emanates from previ-
ous experience on EFT in non-perturbative systems. It
was pointed out in ref. [8] that calculating the potential
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in a non-relativistic system can be understood as the in-
tegration of certain degrees of freedom, which can be im-
plemented as a matching calculation between two EFTs.
In our case, the higher-energy EFT is the HBχL for the
two-nucleon sector, which is a local theory with pions
and non-relativistic nucleons as explicit degrees of free-
dom. This EFT has an energy (E) cut-off (ΛE) such that
E ∼ mπ � ΛE � M ∼ 4πfπ and a momentum (p)
cut-off (Λp) such that p � Λp � M ∼ 4πfπ (mπ and
M stand for the pion and nucleon mass, respectively, and
4πfπ for the scale of non-Goldstone boson QCD states).
Its Lagrangian can be organized according to the chiral
counting since chiral symmetry (and its breaking) are ex-
plicit. The lower-energy EFT has an energy cut-off (Λ′

E)
such that E � Λ′

E � mπ and a momentum cut-off such
that p � mπ � Λ′

p � M . It consists of non-relativistic
nucleons interacting through a (non-local) potential. The
potential plays the role of a matching coefficient. As such,
the potential encodes information on the higher-energy
EFT and can be calculated independently of how the cal-
culation of the lower-energy EFT is organized, namely in-
dependently of what the counting in the low-energy EFT
is. Hence, on the one hand, the potential can be calcu-
lated order by order in χPT, for instance along the lines
of ref. [5]. On the other hand, chiral symmetry is not ex-
plicit anymore in the lower-energy EFT (no pion fields
exist) and, consequently, the chiral counting is not the
natural way to organize the calculation anymore1.

An interesting example of a related situation is the
pionium system (see [9] for a recent account), which
has been studied using a series of EFTs [10]. The
higher-energy EFT is the Chiral Lagrangian coupled to
electromagnetism and the lower-energy one a quantum-
mechanical Hamiltonian with the Coulomb potential and
local interactions. The matching between the two EFTs
can be carried out perturbatively in χPT and α, but the
calculations in the lower EFT are carried out keeping
the Coulomb potential non-perturbatively (otherwise no
bound state exists) and, furthermore, one does not need
to specify to which order of χPT the local potentials have
been calculated.

Following that spirit, the main question for the NN
system is what should be treated as the LO potential in
the low-energy calculations. In the (higher energy) χPT
counting the LO potential consists of the one-pion ex-
change term (OPE) plus two local (δ-function) terms. This
assumes that the natural scale of the two local terms is
of the order of the last scale integrated out (∼ M). If
the NN system were in a perturbative regime the scale of
these two local terms would provide the scale of the scat-

1 Note that the range of energies for which this EFT holds
excludes relativistic pions as explicit degrees of freedom. Hence,
processes involving relativistic pions, like pion-deuteron scat-
tering at pion three-momenta of the order of mπ, cannot be di-
rectly computed in it. One has first to separate the two-nucleon
low-energy sub-process of the whole scattering process and
then apply the EFT to this subprocess only. On the other hand,
non-relativistic pions (i.e. pions with three-momenta much
smaller than mπ) could be easily incorporated in the EFT.

tering lengths. Since the experimental scattering lengths
are much larger than the ones predicted in this way, we can
foresee at least two possibilities. The first one is that an
unsuspected behavior of QCD at energies ∼ ΛQCD pro-
duces unnaturally large values for the local potentials.
Then one may consider these local terms as the (low-
energy) LO potential and treat the OPE (and higher or-
ders) perturbatively [11]. This approach has been worked
out at N2LO [12] showing slow convergence in the 1S0

channel and no convergence at all in the 3S1-3D1 channel.
The second possibility is that the local terms do have natu-
ral sizes but the low-energy dynamics is responsible for the
large scattering lengths. In this case there is no reason to
treat the OPE perturbatively and a fully non-perturbative
evaluation of the LS equation with LO potential (in the
χPT counting) is required [4,5]. We shall stick to this sec-
ond possibility for most of the paper, although eventually
a third possibility, which is half-way, will emerge as the
most reasonable one (to us).

Before going on, let us briefly discuss some previous
work on the renormalization of the LS equation. The case
of a local (and hence separable) potential, namely con-
sisting of delta-functions and its derivatives, has received
plenty of attention [13–15]. This was expected to mimic
the very low-energy (p � mπ) behavior of NN scattering.
The regularization of this pure local EFT was a matter
of debate some time ago: a cut-off regularization showed
a systematic order-by-order improvement in the phase
shift fit, whereas dimensional regularization (DR) with
MS scheme was extremely sensible to the large scattering
length and shallow (nearly)-bound state, which translated
into a poor radius of convergence. The shortcomings of
DR with MS were cured using the PDS scheme [11] (see
also [16]). The final outcome appears to be equivalent to
the well-known Effective Range Expansion [17]. The next
step in difficulty is renormalizing the LO potential in the
1S0 channel, which contains a non-separable piece from
the OPE. It was first carried out in [18], and reproduced by
several authors (see [19], for a recent report). We shall re-
obtain these results in sect. 3. Finally, as for renormaliza-
tion in the 3S1-3D1 channel, the available literature is, on
the contrary, somewhat scarce [19,20] and the results are,
to our understanding, not fully satisfactory (see sect. 6).

The main difference of our approach with respect to
the previous ones is that, in addition to the bare constants
associated to local terms in the potential, we will also al-
low, but only in an initial stage, the bare constants of the
non-local potentials to have non-trivial flows. This possi-
bility, which was already mentioned (but not developed)
in ref. [21], is less restrictive than the standard assumption
that only local terms should renormalize the LS equation
for NN systems2, which, in any case, is contained in it.

2 In fact, this turns out to be the usual approach in theo-
retical works on renormalization of singular potentials (see, for
instance, [22]). Besides, there are known examples in a non-
relativistic EFT of QCD (pNRQCD) where the renormaliza-
tion of non-local potentials is required in order to absorb cer-
tain divergences [23], the most spectacular of which being the
renormalization of the static potential [24].
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This will allow us, not only to make meaningful compar-
isons with related work, but also to draw restrictions on
the power counting. Having examined which conditions on
the coupling constants are required in order to renormal-
ize the LS equation, and the eventual consequences this
has on our observables, we will be able to glean which
terms of the potential can be included at LO, and which
ones must be treated as perturbations, in the relevant case
where only the coupling constants of local terms are al-
lowed to flow and non-local potentials are fixed at the
HBχPT values.

So, once the (low-energy) LO potential has been iden-
tified, we suspect that, in order to be renormalizable,
a higher-order calculation should be organized as fol-
lows. The LS equation must be solved and renormalized
treating the LO potential, as well as its couplings, non-
perturbatively, but the NLO potentials and higher per-
turbatively.

Therefore, the first step in this program is to identify
a (low-energy) LO potential and to prove that it is renor-
malizable. We start by the naive choice, namely we take
it with the form of the LO potential in the χPT count-
ing. For the spin singlet channel the LS equation is indeed
renormalizable3. However, for the spin triplet channels, we
find that a (low-energy) LO potential with the form of the
LO potential in the χPT counting is only renormalizable
if a certain coupling constant of a non-local potential has
a non-trivial flow. (Or, in other words, if only the coupling
constants of the local potentials are allowed to flow it is
non-renormalizable.) Even in this case, the physical out-
come is not satisfactory: the partial-wave mixing is washed
out of the renormalized amplitude. We conclude that the
(low-energy) LO potential must not have the form of the
full LO potential in the χPT counting for the triplet chan-
nels. We identify a (low-energy) LO potential, which is
renormalizable, and prove that, if we treat the difference
as a perturbation, it is also renormalizable at first order.

We distribute the paper as follows. In sect. 2 we in-
troduce a convenient basis for the NN wave functions and
our notations. A brief note at the end of this section serves
to close all what refers to the isosinglet-singlet channel. In
sect. 3 we prove that the isovector-singlet channel is renor-
malizable and provide explicit expressions for the cut-off
dependence of the bare parameters both for a hard cut-
off and for dimensional regularization. In sect. 4 we prove
that the isosinglet-triplet channel is also renormalizable,
but requires a strong cut-off dependence of the coupling
constant of the (non-local) term in the potential which, in
turn, prevents the renormalized amplitude from partial-
wave mixing. We interpret this result as an indication that
this term must be treated perturbatively and prove that,
if so, the first order in perturbation theory is finite. Af-
ter briefly discussing in sect. 5 the isovector-spin vector
channel, sect. 6 is devoted to a discussion. Appendices A
and B contain technical details. Appendix C explores the

3 The counterterm needed is NLO in the χPT counting,
which in our approach only means that the matching between
HBχL and our EFT must be done for consistency at NLO for
the local terms.

possibility of having a non-trivial fixed point. Appendix D
displays technical details which are relevant for comparing
our results with those of ref. [19].

2 A convenient decomposition

We start from a potential with the form of the LO NN po-
tential in the χPT counting, given, for instance, in ref. [5]:

V (k,k′) = −
(

gA

2fπ

)2

τ1 · τ2σ1 · (k − k′)σ2 · (k − k′)
(k − k′)2 +m2

π

+CS + CT σ1 · σ2 , (2.1)

where fπ is the pion decay constant (∼ 93 MeV).
This potential acts on a wave function Ψab

αβ(k), where
a, b and α, β are nucleon isospin and spin indices, respec-
tively. This wave function can be decomposed into irre-
ducible representations of spin and isospin as follows:

Ψab
αβ(k) =

1
2

[
(τ2)ab(σ2)αβ ψSS(k)

+ (τ2)ab(σk′σ2)αβ ψk′
SV (k)

+ (τkτ2)ab(σ2)αβ ψk
V S(k)

+ (τkτ2)ab(σk′σ2)αβ ψkk′
V V (k)

]
. (2.2)

The potential (2.1) reduces for each isospin-spin chan-
nel to

VSS(k,k′) = −3
(

gA

2fπ

)2 (k − k′)2

(k − k′)2 +m2
π

+ CS − 3CT ,

V i′j′
SV (k,k′) = 3

(
gA

2fπ

)2

× (k − k′)2δi′j′ − 2(k − k′)i
′
(k − k′)j

′

(k − k′)2 +m2
π

+(CS + CT ) δi′j′
,

V ij
V S(k,k

′) =
(

gA

2fπ

)2 (k − k′)2δij

(k − k′)2 +m2
π

+(CS − 3CT ) δij ,

V ij,i′j′
V V (k,k′) = −

(
gA

2fπ

)2

× δij (k − k′)2δi′j′ − 2(k − k′)i
′
(k − k′)j

′

(k − k′)2 +m2
π

+(CS + CT ) δij δi′j′
. (2.3)

We still have to implement the Fermi symmetry. This
implies that the irreducible wave functions (2.2) must ful-
fill (isospin and spin indices will be omitted for the rest of
this section)

ψSS(k) = −ψSS(−k) ,
ψSV (k) = ψSV (−k) ,
ψV S(k) = ψV S(−k) ,
ψV V (k) = −ψV V (−k) , (2.4)
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which is implemented in the LS equation if we choose

TSS(k,k′;E) =
1
2
(VSS(k,k′)− VSS(−k,k′))

+
1
2

∫ Λ d3k′′

(2π)3
(VSS(k,k′′)− VSS(−k,k′′))

× 1
E − k′′2

M + iη
TSS(k′′,k′;E) (SS ←→ V V ) ,

TSV (k,k′;E) =
1
2
(VSV (k,k′) + VSV (−k,k′))

+
1
2

∫ Λ d3k′′

(2π)3
(VSV (k,k′′) + VSV (−k,k′′))

× 1
E − k′′2

M + iη
TSV (k′′,k′;E) (SV ←→ V S) .

(2.5)

It is the advantage of the above decomposition that we
will not need to specify which (coupled) partial waves we
are analyzing.

If the LS equation for the potentials (2.3) was well
defined, using (2.5) would be equivalent to solving the LS
equation:

T̂xy(k,k′;E) = Vxy(k,k′) +
∫ Λ d3k′′

(2π)3
Vxy(k,k′′)

× 1
E − k′′2

M + iη
T̂xy(k′′,k′;E) , (2.6)

(x, y=S, V ), namely ignoring the statistics and then using
the standard formulas

TSS(k,k′;E) =
1
2

(
T̂SS(k,k′;E)− T̂SS(−k,k′;E)

)
(SS → V V ) ,

TSV (k,k′;E) =
1
2

(
T̂SV (k,k′;E) + T̂SV (−k,k′;E)

)
(SV → V S) . (2.7)

However, the LS equation for T̂xy is not well defined
in any channel and hence using (2.5) or (2.6)-(2.7) may
not be totally equivalent. In particular, for the SS and
V V channels, the UV divergences one finds using (2.5)
are softer than those from (2.6)-(2.7), so we shall work
with (2.5). For the SV and V S channels, however, the UV
divergences found using (2.5) are as strong as the ones that
stem from (2.6)-(2.7). For convenience, we have chosen to
work with the latter for these channels.

The LS equation in the isoscalar-scalar channel in
(2.5) is already well defined, as is apparent from the anti-
symmetrization of the corresponding potential (2.3). On
the contrary, the other three channels require regulariza-
tion. Searching for the systematics to tackle them will be
the aim of the next three sections. For notation simplic-
ity, the energy dependence of the T -matrices as well as of
other auxiliary functions will not be displayed explicitly
for the rest of the paper.

3 The isovector-singlet channel

The LS equation for this channel reads

T̂ ij
V S(k,k

′) = V ij
V S(k,k

′) +
∫ Λ d3k′′

(2π)3
V ik

V S(k,k
′′)

× 1
E − k′′2

M + iη
T̂ kj

V S(k
′′,k′) ,

where

V ij
V S(k,k

′) =
{
c0 +

c2
(k − k′)2 +m2

π

}
δij ,

c0 := CS − 3CT +
(

gA

2fπ

)2

,

c2 := −
(
gAmπ

2fπ

)2

, (3.1)

where in the last lines we display the values those con-
stants take if the matching to HBχL is carried out at LO
in χPT. However, for the rest of the analysis we need not
specify which order in χPT c0 and c2 have been calculated
at. The hat and the V S subscript will be dropped in the
following.

Let us define

A(k′) δij :=
∫ Λ d3k′′

(2π)3
T ij(k′′,k′)

E − k′′2
M + iη

. (3.2)

Then (3.1) reads:

T ij(k,k′) = c0(1 +A(k′)) δij +
c2 δ

ij

(k − k′)2 +m2
π

+
∫ Λ d3k′′

(2π)3
c2

(k − k′′)2 +m2
π

T ij(k′′,k′)
E − k′′2

M + iη

(3.3)

and can be rewritten after solving

T2(k,k′) =
1

(k − k′)2 +m2
π

+
∫ Λ d3k′′

(2π)3

× c2
(k − k′′)2 +m2

π

T2(k′′,k′)
E − k′′2

M + iη
, (3.4)

in the form

T (k,k′) = c2 T2(k,k′) + c0(1 +A(k′))

×
[
1 + c2

∫ Λ d3k′′

(2π)3
T2(k,k′′)

E − k′′2
M + iη

]
, (3.5)

where we have dropped the δij structure. If A(k′) were a
fixed function, the equation above would be well defined
and could already be solved with no need to regularize it.
However, A(k′) is a functional of T and a second equation
which relates them must be introduced. This is achieved
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c0(1 + A(k′)) =

1 + c2

∫ Λ d3k
(2π)3

T2(k,k′)
E−k2

M
+iη

1
c0

−
[
I0 + c2

∫ Λ d3k
(2π)3

∫ Λ d3k′′
(2π)3

1

E−k2
M

+iη
T2(k,k′′) 1

E−k′′2
M

+iη

] , I0 :=

∫ Λ d3k

(2π)3
1

E − k2

M
+ iη

. (3.6)

by multiplying eq. (3.5) by 1/(E− k2

M +iη) and integrating
over k. We obtain

see equation (3.6) above

Substituting iteratively T2 in (3.4) in the rhs of (3.6) we
see that only the first iteration produces further divergent
expressions when Λ → ∞. We can then write (3.6) as

c0(1 +A(k′)) =
1 + c2F(k′)

1
c0

− [ I0 + c2 L+ c2F ′ ]
, (3.7)

where I0 and L contain linearly and logarithmically di-
vergent terms, respectively, whereas F (F ′ ) just denote
finite functions:

L :=
∫ Λ d3k

(2π)3

∫ Λ d3k′′

(2π)3
1

E − k2

M + iη

× 1
(k − k′′)2 +m2

π

1
E − k′′2

M + iη
,

F(k′) :=
∫ Λ d3k

(2π)3
T2(k,k′)

E − k2

M + iη
,

F ′ :=
∫ Λ d3k

(2π)3

∫ Λ d3k′′

(2π)3

∫ Λ d3k′′′

(2π)3
1

E − k2

M + iη

× c2
(k − k′′)2 +m2

π

T2(k′′,k′′′)
E − k′′2

M + iη

1
E − k′′′2

M + iη
.

(3.8)

It is clear that the expression (3.7) can be renormalized
by a redefinition of c0. In dimensional regularization, (D =
3 + 2ε), we obtain

1
c0

= −M2 c2
4(4π)2

(
1
ε
+ χsch

)
+

1
cr
0(µ)

,

χMS = 0 ,

χMS = γE − Log(4π) , (3.9)

which is in agreement with [18], and for a hard cut-off:

1
c0

= −MΛ

2π2
+

M2 c2
32π2

Log
(
Λ2

µ2

)
+

1
cr
0(µ)

. (3.10)

If we now wish to solve numerically the LS equation,
we should proceed as usual and introduce a hard cut-off.
However, c0 is not to be fitted to the experimental data
but substituted by (3.10) and the cut-off made as large as
possible (in practice, it should be enough if

√
EM/Λ is of

the order of neglected subleading contributions from the
NLO potential —see [21] for a more technical discussion).
What we have just proved is that the result will be cut-off
independent up to corrections

√
EM/Λ. µ must be fixed

at the relevant momentum scale µ ∼ (
√
EM,mπ) and

cr
0(µ) tuned to fit the experimental data.

It was already noticed in ref. [18] that if one takes
the LO χPT value for c2, the counterterm c0 requires a
contribution of NLO in χPT. In our approach this only
means that the matching calculation in order to get c0
from the HBχL must be done at least at NLO in χPT.

Although we have no prediction for cr
0(µ), we can try to

understand from (3.10) how large scattering lengths may
arise. Since cr

0(µ) evolves according to a non-perturbative
renormalization group (RG) equation it might take very
different values depending on the scale it is evaluated at.
After solving it,

cr
0(µ) =

cr
0(µ0)

1 + M2c2cr
0(µ0)

16π2 Log µ
µ0

. (3.11)

If we input the value of ref. [18] cr
0(mπ) = −( 1

79 MeV )
2,

we obtain cr
0(M) = −( 1

125 MeV )
2, which is not quite at the

natural scale (∼ M). Hence, the non-perturbative low-
energy dynamics does not seem to be enough to fill the
gap between the natural scales and the large scattering
lengths. In spite of that, the variation of cr

0(µ) from mπ to
M is large enough as to justify a non-perturbative treat-
ment of the OPE in this channel.

4 The isosinglet-vector channel

The LS equation for this channel reads:

T̂ ij
SV (k,k

′) = V ij
SV (k,k

′) +
∫ Λ d3k′′

(2π)3
V ik

SV (k,k
′′)

× 1
E − k′′2

M + iη
T̂ kj

SV (k
′′,k′) ,
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where

V ij
SV (k,k

′) =
{
c0 +

c2
(k − k′)2 +m2

π

}
δij

+c1
(k − k′)i(k − k′)j

(k − k′)2 +m2
π

,

c0 := CS + CT + 3
(

gA

2fπ

)2

,

c1 := −6
(

gA

2fπ

)2

,

c2 := −3
(
gAmπ

2fπ

)2

, (4.1)

where we display the values of the coupling constants when
the matching to HBχPT is carried out at leading order in
χPT. Recall again that the analysis which follows holds
for arbitrary c0 , c1 and c2 independently of the match-
ing values that these parameters may take at the HBχPT
scale. We shall drop the subscript SV and the hat in the
following. We call the term proportional to c1 above spin
symmetry breaking (SSB) term. This term breaks the or-
bital angular momentum conservation and makes the anal-
ysis of this channel qualitatively different from the previ-
ous one. In order to illustrate this, let us take k′ = 0
for simplicity. As we regulate (4.1), the possible diver-
gences arising when the regulator is removed depend on
the high-momentum behavior of T ij(k). If T ij(k) ∼ |k|α,
the usual power counting arguments imply that, due to
the SSB term, the integral on the rhs will rise this power
by one. Hence, the high-momentum behavior of the lhs
of the equation will not match the one of its rhs unless:
i) α = −1 and the high-momentum contribution of the
potential cancels out the one arising from the integral or
ii) α = 0 and the bare coupling constant c1 goes to zero
as the cut-off goes to infinity, which removes the |k|α+1

term on the rhs. We prove in appendix A that the case i)
in fact reduces to ii).

The preceding discussion provides a rather intuitive
introduction to what, in the course of sect. 4.1, we will
demonstrate in full detail. That is, all those rising diver-
gences caused by the SSB term can only be renormalized
by a, so far undetermined, flowing of their accompanying
coupling constant, c1. Next, we will fix this cut-off de-
pendence and, having explored the consequences such a
behavior has on the amplitude, will come back in sect. 4.2
to standard procedures. There it is shown that the alterna-
tive of treating SSB as a perturbation solves the problem,
as all divergences get renormalized by local counterterms
and no c1 flowing is longer required.

4.1 Non-perturbative treatment of the SSB term

Let us then return to eq. (4.1). It has the following struc-
ture:

T ij(k,k′) = c0(δij +Aij(k′))

+c1

[
(k − k′)i(k − k′)j

(k − k′)2 +m2
π

+ Bij(k,k′)
]

+c2
δij

(k − k′)2 +m2
π

+ c2

∫ Λ d3k′′

(2π)3

× 1
(k − k′′)2 +m2

π

T ij(k′′,k′)
E − k′′2

M + iη
,

Aij(k′) =
∫ Λ d3k

(2π)3
T ij(k,k′)

E − k2

M + iη
,

Bij(k,k′) =
∫ Λ d3k′′

(2π)3
(k − k′′)i(k − k′′)k

(k − k′′)2 +m2
π

T kj(k′′,k′)
E − k′′2

M + iη
.

(4.1.1)

Let us define

T ij(k,k′) := c0(δij +Aij(k′))T0(k)

+c1 T
ij
1 (k,k′) + c2 T2(k,k′) δij ,

T0(k) = 1 + c2

∫ Λ d3k′′

(2π)3

× 1
(k − k′′)2 +m2

π

T0(k′′)
E − k′′2

M + iη
,

T ij
1 (k,k′) =

(k − k′)i(k − k′)j

(k − k′)2 +m2
π

+ Bij(k,k′)

+ c2

∫ Λd3k′′

(2π)3
1

(k−k′′)2 +m2
π

T ij
1 (k′′,k′)

E − k′′2
M + iη

,

T2(k,k′) =
1

(k − k′)2 +m2
π

+ c2

∫ Λ d3k′′

(2π)3

× 1
(k − k′′)2 +m2

π

T2(k′′,k′)
E − k′′2

M + iη
, (4.1.2)

which allows us to isolate in T ij
1 (k,k′) and c0 (δij +

Aij(k′)) all sources of divergent behavior, since T0(k) and
T2(k,k′) are perfectly well defined.

Using the expressions of Bij(k,k′) in (4.1.1) and
T ij(k,k′) in (4.1.2), T ij

1 (k,k′) can be re-casted in the form

T ij
1 (k,k′) = c0(δkj +Akj(k′))T ik

10 (k)

+T ij
11(k,k

′) + c2T
ij
12(k,k

′) ,

T ij
10(k) =

∫ Λ d3k′′

(2π)3
(k − k′′)i(k − k′′)j

(k − k′′)2 +m2
π

T0(k′′)
E − k′′2

M + iη

+
∫ Λ d3k′′

(2π)3
c1(k − k′′)i(k − k′′)k + c2 δ

ik

(k − k′′)2 +m2
π

× T kj
10 (k

′′)
E − k′′2

M + iη
,
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T ij
11(k,k

′) =
(k − k′)i(k − k′)j

(k − k′)2 +m2
π

+
∫ Λ d3k′′

(2π)3

×c1(k − k′′)i(k − k′′)k + c2 δ
ik

(k − k′′)2 +m2
π

T kj
11 (k

′′,k′)
E − k′′2

M + iη
,

T ij
12(k,k

′) =
∫ Λ d3k′′

(2π)3
(k − k′′)i(k − k′′)j

(k − k′′)2 +m2
π

T2(k′′,k′)
E − k′′2

M + iη

+
∫ Λ d3k′′

(2π)3
c1(k−k′′)i(k−k′′)k + c2 δ

ik

(k − k′′)2 +m2
π

T kj
12 (k

′′,k′)
E − k′′2

M + iη
.

(4.1.3)

This decomposition enables us to compute c0(δij +
Aij(k′)), and hence the full amplitude T ij(k,k′), in terms
of T0(k), T

ij
1n(k,k

′) (n = 0, 1, 2) and T2(k,k′) through the
equation[

δik

c0
−

∫ Λ d3k

(2π)3
T0(k) δik

E − k2

M + iη

− c1

∫ Λ d3k

(2π)3
T ik

10 (k)
E − k2

M + iη

]
c0(δkj +Akj(k′)) =

δij + c1

∫ Λ d3k

(2π)3
T ij

11(k,k
′) + c2T

ij
12(k,k

′)
E − k2

M + iη

+ c2

∫ Λ d3k

(2π)3
T2(k,k′) δij

E − k2

M + iη
. (4.1.4)

As we have already mentioned, T0(k) and T2(k,k′) are
finite when the cut-off is removed. If we solve T ij

1n(k,k
′),

n = 0, 1, 2 iteratively, the most divergent pieces in the
n-th iteration are T10 ∼ (c1Λ)nΛ, T11 ∼ (c1Λ)n and
T12 ∼ (c1Λ)n−1c1. These series are expected to have a
finite radius of convergence. The radius of convergence is
in any case non-zero because they are bounded by geo-
metric series (or derivatives of them). If c1 does not go to
zero as 1/Λ or stronger (in particular, if c1 is not allowed
to flow), each series will separately diverge. In that case,
a finite result can only be obtained if non-trivial cancella-
tions occur for all n, which we do not see how they could
actually happen. If, on the contrary,

c1(Λ) =
c̄1
Λ

+ ... , (4.1.5)

and c̄1 is small enough, the series will converge. For the
T -matrix, such a strong cut-off dependence implies that
the terms

c1T
ij
10(k) −→ t

(0)
10 δ

ij +
tij10(k)
Λ

+ ... ,

c1T
ij
11(k,k

′) −→ tij11(k,k
′)

Λ
+ ... ,

c1T
ij
12(k,k

′) −→ tij12(k,k
′)

Λ
+ ... , (4.1.6)

where t
(0)
10 is simply a finite constant and, as we can see,

all (k, k′)-encoded information will be washed out from
the amplitude.

That is to say:

T ij(k,k′) = lim
Λ→∞

c0(δkj+Akj(k′))
(
T0(k)δik+c1T

ik
10 (k)

)
+c1T

ij
11(k,k

′) + c2

(
T2(k,k′) δij + c1T

ij
12(k,k

′)
)
=

c0(δij +Aij(k′))
(
T0(k) + c1 t

(0)
10

)
+ c2T2(k,k′)δij ,

(4.1.7)

which is finite provided c0 (δij +Aij(k′)) is finite. In order
to prove the latter, we borrow from sect. 3 the following
results:∫ Λ d3k

(2π)3
T0(k)

E − k2

M + iη
=

−MΛ

2π2
+

M2c2
32π2

Log
(
Λ2

µ2

)
+O (1) ,∫ Λ d3k

(2π)3
T2(k,k′)

E − k2

M + iη
= O (1) , (4.1.8)

and find in appendix B:

c1

∫ Λ d3k

(2π)3
T ii

10(k)
E − k2

M + iη
= a0Λ+ ib0

√
EM

+ d0Log
(

Λ

mπ

)
+O

(
1
Λ

)
,

c1

∫ Λ d3k

(2π)3
T ii

11(k,k
′)

E − k2

M + iη
= O (1) ,

c1

∫ Λ d3k

(2π)3
T ii

12(k,k
′)

E − k2

M + iη
= O

(
1
Λ

)
, (4.1.9)

where a0, b0, d0 are cut-off independent constants related
to c̄1. Then the flow

1
c0

= −MΛ

2π2
+

a0Λ

3
+

M2c2
32π2

Log
(
Λ2

µ2

)
+
d0

6
Log

(
Λ2

µ2

)
+

1
cr
0(µ)

(4.1.10)

makes c0(δij +Aij(k′)) finite and hence (4.1.7) does. We
have then proved that the flows (4.1.5) and (4.1.10) renor-
malize the triplet channel.

It is not difficult to see that the various series above
involving divergent terms are bounded by geometric series
or derivatives of them. This ensures that our flows provide
actually finite expressions for the amplitude if c̄1 is small
enough. However, this amplitude appears to be diagonal
in spin space and hence orbital angular momentum is con-
served. Although, the observed 3S1-3D1 mixing, which is
small, might be attributed to a higher-order effect, it is
clear from ref. [25] that it is due to the OPE to a large
extent. In order to preclude the conservation of orbital an-
gular momentum, we can foresee two ways out: i) a SSB
term may survive in the renormalized amplitude if c̄1 is
tuned infinitely close to the radius of convergence of the se-
ries, so that our bounds do not hold anymore, and ii) the
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SSB term from OPE must be treated as a perturbation
and renormalized as such. The possibility i) is examined
in appendix C, where we show it unlikely to be realized.
In the following subsection we explore ii) and prove that
if a suitable SSB term is treated as a perturbation, the
amplitude is renormalizable at first order and the mixing
survives.

4.2 Treating the SSB term perturbatively

Let us split the potential as

V ij(k,k′) = V (0) ij(k,k′) + V (1) ij(k,k′) ,

V (0) ij(k,k′) =
{
c̃0 +

c̃2
(k − k′)2 +m2

π

}
δij ,

V (1) ij(k,k′) = c̃1
(k − k′)i(k − k′)j − (k−k′)2

3 δij

(k − k′)2 +m2
π

,

c̃0 := CS + CT +
(

gA

2fπ

)2

,

c̃1 := −6
(

gA

2fπ

)2

,

c̃2 := −
(
gAmπ

2fπ

)2

, (4.2.1)

with LO values for the coupling constants indicated. In
the following we drop the SV -channel sub-indices.

The amplitude will be written as

T ij(k,k′) = T (0) ij(k,k′) + T (1) ij(k,k′) , (4.2.2)

where T (0) ij(k,k′) fulfills

T (0) ij(k,k′) = V (0) ij(k,k′) +
∫ Λ d3k′′

(2π)3
V (0) ik(k,k′′)

× 1
E − k′′2

M + iη
T (0) kj(k′′,k′) . (4.2.3)

The renormalized solution to this equation is given by
T (0) ij(k,k′) = T (k,k′)δij in sect. 3. At first order in per-
turbation theory T (1) ij(k,k′) verifies

T (1) ij(k,k′) = V (1) ij(k,k′)

+
∫ Λ d3k′′

(2π)3
V (1) ik(k,k′′)

1
E − k′′2

M + iη
T (0) kj(k′′,k′)

+
∫ Λ d3k′′

(2π)3
V (0) ik(k,k′′)

1
E − k′′2

M + iη
T (1) kj(k′′,k′) .

(4.2.4)

Using (3.4) and (3.5) we can see that the second term
above is finite. We can then gather the first and second
terms into a new, energy-dependent, potential defined as

Ṽ (1) ij(k,k′′) := V (1) ij(k,k′) +
∫ Λ d3k′′

(2π)3
V (1) ik(k,k′′)

× 1
E − k′′2

M + iη
T (0) kj(k′′,k′) . (4.2.5)

Therefore, the integral equation reduces to

T (1) ij(k,k′) = Ṽ (1) ij(k,k′′) + c̃0 Rij(k′)

+
∫ Λ d3k′′

(2π)3
c̃2

(k − k′′)2 +m2
π

T (1) ij(k′′,k′)
E − k′′2

M + iη
,

Rij(k′) :=
∫ Λ d3k′′

(2π)3
T (1) ij(k′′,k′)
E − k′′2

M + iη
. (4.2.6)

In order to prove it finite we decompose

T (1) ij(k,k′) = c̃0 Rkj(k′)T ik
0 (k) + T̃ ij

1 (k,k′) , (4.2.7)

with T ij
0 (k) defined in (4.1.2) and T̃ ij

1 (k,k′) given by

T̃ ij
1 (k,k′) := Ṽ (1) ij(k,k′′) +

∫ Λ d3k′′

(2π)3

× c̃2
(k − k′′)2 +m2

π

T̃ ij
1 (k′′,k′)

E − k′′2
M + iη

. (4.2.8)

Both T ij
0 (k) and T̃ ij

1 (k,k′) are well defined (the tensor
structure is crucial for the latter to be so). Divergences can
only arise in c̃0 Rij(k′), which reads

c̃0 Rij(k′) =

∫ Λ d3k
(2π)3

T̃ ij
1 (k,k′)

E−k2
M +iη

c̃−1
0 − 1

3

∫ Λ d3k
(2π)3

T ii
0 (k)

E−k2
M +iη

. (4.2.9)

The numerator is well defined (for that the tensor
structure is again crucial) and the divergences in the de-
nominator have exactly the same structure as in the de-
nominator of (3.7). Hence they are renormalized by the
same c0 flows. We have then proved that if we treat the
SSB term as a perturbation, the amplitude is renormal-
izable at first order in perturbation theory and no extra
counterterm needs to be introduced.

5 Isovector-vector channel

If we use (2.6)-(2.7) in order to obtain TV V (k,k′), the
calculation of T̂V V (k,k′) would reduce to that of the pre-
vious section. However, as mentioned in sect. 2, the UV
behavior is smoother in terms of (2.5), as happens in the
SS-channel, although here we still need to introduce a reg-
ularization. The LS equation, dropping the isospin delta,
reads:

T ij
V V (k,k

′) = V A ,ij
V V (k,k′) +

∫ Λ d3k′′

(2π)3
V A, ik

V V (k,k′′)

× 1
E − k′′2

M + iη
T kj

V V (k
′′,k′) , (5.1)

where

V A, ij
V V (k,k′) =

1
2

(
V ij

V V (k,k
′)− V ij

V V (−k,k′)
)
=

c1
2

(
(k − k′)i(k − k′)j

(k − k′)2 +m2
π

− (k+ k′)i(k+ k′)j

(k+ k′)2 +m2
π

)
+
c2
2

(
δij

(k − k′)2 +m2
π

− δij

(k+ k′)2 +m2
π

)
, (5.2)
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where those constants calculated at first order in χPT take
the values

c1 := 2
(

gA

2fπ

)2

,

c2 :=
(
gAmπ

2fπ

)2

. (5.3)

We have not analyzed the possible existence of non-
trivial flows which may renormalize the above equation.
The fact that the SSB term must be treated perturbatively
in the SV -channel, indicates that also here we should pro-
ceed according to the same philosophy. The potential (5.2)
in the zeroth order approximation reads:

V
(0), ij
V V (k,k′) =

c2
2

(
δij

(k−k′)2 +m2
π

− δij

(k+k′)2 +m2
π

)
,

(5.4)
which leads to a well-defined LS equation. At first order
in perturbation theory we will have

T ij
V V (k,k

′) = T
(0) ij
V V (k,k′) + T

(1) ij
V V (k,k′) ,

T
(1) ij
V V (k,k′) = V

(1) ij
V V (k,k′)

+
∫ Λd3k′′

(2π)3
V

(1) ik
V V (k,k′′)

T
(0) kj
V V (k′′,k′)

E − k′′2
M + iη

+
∫ Λd3k′′

(2π)3
V

(0) ik
V V (k,k′′)

T
(1) kj
V V (k′′,k′)

E − k′′2
M + iη

,

(5.5)

which is also well defined. We expect the divergences aris-
ing at higher orders to be absorbed by local counterterms.

6 Discussion

We have addressed the renormalization of the LS equa-
tion for the LO potentials (in the χPT counting) of the
NN system in all channels. In addition, for each channel
we have been able to carry out our analysis for all par-
tial waves (including partial-wave mixing) at once. The
isoscalar-scalar channel does not require regularization.
For the isovector-scalar channel we recover the flows of
ref. [18]. The remaining two channels have deserved a more
detailed study.

The first non-trivial result is that the renormalization
of the isoscalar-vector channel requires a strong flow of the
coupling constant of a non-local potential, the SSB one,
or, in other words, if only the coupling constants of the
local potentials are allowed to flow, the isoscalar-vector
channel is not renormalizable. Several comments are in
order.

First of all, the flow (4.1.5) of the coupling constant of
the SSB term is not such a big surprise. Notice that at high
momentum this term tends to a (direction-dependent)
constant, which is the same behavior (except for the di-
rection dependence) as the δ-function term both in the

singlet and the triplet channel, the coupling constants of
which also show similar flows. The main difference is that
the leading behavior for c0 is fixed and the subleading one
contains the free parameter (cr

0(µ)). For c1 instead, the
leading behavior contains the free parameter (c̄1) and the
subleading behavior is not observable.

What is worse, the flow (4.1.5) has undesirable conse-
quences: the renormalized T -matrix conserves orbital an-
gular momentum, even if the bare interaction does not
(see appendix C)4. Since it is precisely the OPE the main
responsible for mixing (also of higher partial waves [25]),
we would like it to keep doing this job for us. Therefore,
in order for c1 not to flow, but to be fixed at the HBχL
values and produce partial-wave mixing, we are forced to
exclude the SSB term from the (low-energy) LO potential,
and to treat it as a perturbation. This also appears to be
reasonable from the phenomenological point of view, since
the observed mixings are small [25].

We have developed this line in sects. 4.2 and 5. We
have proved that at first order the vector channels remain
renormalizable (at zeroth order the problem reduces to
the one in the singlet channels, which are renormalizable).
The picture which emerges is half-way between [11], where
the pions are treated perturbatively, and [5,17], where the
whole potential is treated non-perturbatively. The (low-
energy) LO potential has the form of the LO potential
in the χPT counting which conserves orbital angular mo-
mentum. We are tempted to propose the following count-
ing. The O(Qn) (n = 0, 1, ...) contribution to the NN po-
tential must be divided into two pieces: the one which
conserves orbital angular momentum (SS) and the one
which does not (SSB). The SSB terms keep their leading
χPT counting but the SS ones are enhanced and must
be counted as O(Qn−1). Only the LO potential O(Q−1)
must be treated (and renormalized) non-perturbatively.
We have seen here that this proposal is theoretically con-
sistent at next-to-leading order, and, in addition, it does
not require any coupling constant of a non-local potential
to flow anymore. Notice that the difference with respect to
the expansion of ref. [11] consists in including a piece of the
one-pion exchange in the (low-energy) LO potential. This
piece vanishes in the UV, which makes us believe that the
renormalization properties of the theory will be similar to
those in the expansion of ref. [11]. However, the conver-
gence properties, which are also sensible to the IR, will be
different, and hopefully better. Whether the latter is so
or not requires a N2LO calculation to be compared with
that of ref. [12], which is beyond the scope of this paper.

Let us finally comment on recent work on the sub-
ject [19,20]. The authors in both references try to renor-
malize the triplet channel by adjusting the coupling con-
stant of the δ-potential only. Hence, according to our

4 We have also checked perturbatively in c̄1 and c2 up to or-
der c̄1c2 that the effective range depends on c̄1 only through
the scattering length. Since the latter can be adjusted by tun-
ing cr

0(µ), up to this order both the scattering length and the
effective range are blind to c̄1. We have not looked at what
happens to the rest of the amplitude or to higher orders but
we suspect that they are also insensitive to c̄1.
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results, both works should show a remnant cut-off depen-
dence when the cut-off is large enough. Note also that it
is only in the large cut-off limit when a meaningful com-
parison is possible, since the regularizations used in the
three works are different. The authors of ref. [20], who
use a subtracted (µ-dependent) LS equation, argue that
a reasonable boundary condition is that for large µ the
T -matrix coincides with the potential, and check numer-
ically whether, once the scattering lengths are fixed, the
remaining observables are independent of µ for large µ.
They find that for laboratory energies up to 100MeV the
3S1 and 3D1 phase shifts are remarkably independent of
µ for µ ≥ 0.8GeV, but the mixing angle shows a strong
µ-dependence for 6GeV ≥ µ ≥ 0.8GeV and only for µ ≥
6GeV the µ-dependence smooths and the results may ap-
pear to converge. We interpret this stronger µ-dependence
of the mixing angle as an indication of the remnant cut-
off dependence mentioned above. The authors of ref. [19]
obtain the flows by analyzing the short-distance behav-
ior of the Schrödinger equation (see also [26]). For the 1S0

they are in qualitative agreement with ours. For the triplet
channel they present analytic flow equations which are ar-
gued to coincide with those of the chiral limit. The flow
of the δ-function term is given implicitly by their eq. (18).
They assume that their απ, which is proportional to our
c1, does not flow5 and find a multi-branch structure for
the flow of their V0R

3, which is proportional to our c0
(R → 0, R playing the role of an inverse cut-off). It is
interesting to note that if they allowed απ flow like our
c1 in subsect. 4.1, namely απ ∼ R, and V0R

3 like our c0,
namely V0 ∼ 1/R2, their eq. (18) becomes cut-off inde-
pendent. Hence our flow (4.1.5) is a solution in the R → 0
limit to the flow equation (18) of ref. [19]. Recall, however,
that, if απ is not allowed to flow, the strict limit R → 0
cannot be taken. This is proved in appendix D. Hence
eq. (18) of [19] does not produce an acceptable flow for V0

and, therefore, it cannot be used to properly renormalize
the triplet channel in the R → 0 limit. This is consis-
tent with the fact that we did not find any solution in
sect. 4.1 (when c1 was not allowed to flow), since we were
only analyzing the large cut-off (R → 0) limit. Moreover,
as explained in ref. [19] (see also [26]), the claim of the
renormalizability there is to be understood as follows: R
(the cut-off) is kept finite, but the effect due to the finite-
ness of R is shown to be a higher-order effect in the EFT
expansion. Whereas, at first sight, this may appear to be a
reasonable procedure within an EFT framework, the flows
of eq. (18) of [19] could eventually lead to problems. If we
wish to improve the accuracy of our EFT calculation, we
will have to calculate at higher orders. Even if we insist
in keeping R finite, we will have to choose it smaller and
smaller for the LO terms not to jeopardize the accuracy
of the higher-order calculation. Then at some point R will
hit the region where no continuous solution exists and we
will loose all predictive power (if we give up continuity,
an infinite number of inequivalent solutions exists). Note
that the fact that finite cut-off effects can be compensated

5 Whereas the combination απm2
π that appears in the singlet

channel is equivalent to out c2 and, accordingly, remains fixed.

by higher-dimensional operators [27], which holds in per-
turbatively renormalizable (and asymptotically free) the-
ories, needs not hold here. One should admit, however,
that this might actually happen at very high orders, so
that the procedure proposed in ref. [19] may prove useful
in practice.
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Appendix A. The case α = −1

The more general decomposition of the high momentum
behavior of T ij(k) for α = −1 reads:

T ij(k) = B−1
δij

|k| + B̃−1
kikj

|k|3 + Pij(k) , (A.1)

where limk→∞Pij(k) ∼ 1
k2 . Notice then that the integral

in (4.1) at most diverges logarithmically and, furthermore,
the divergent term must be proportional to the δij tensor.
By calculating the high-energy behavior of the integral in
the rhs of (4.1) we obtain

T ij(k) ∼ c0δ
ij + c1

kikj

k2
− Mc0

2π2

[
B−1 +

B̃−1

3

]

×Log
(

Λ2

−EM

)
δij +

Mc1
4π2

B−1 + B̃−1

3

×
[
Log

(
k2

Λ2

)
+ f1

]
δij − Mc1

4π2

[
B−1 +

B̃−1

3

]

×
[
Log

(
k2

−EM

)
+ f2

]
kikj

k2
, (A.2)

with f1 and f2 two finite, constant terms. Observe that,
although the cut-off dependence can be removed by a suit-
able redefinition of c0, the non-analytic terms ∼ Log|k|
cannot be compensated by the potential. Self-consistency
of (A.1) and (A.2) force c1 → 0 again.

Appendix B. Proof of (4.1.9)

Let us define

Hα(EM) := c1

∫ Λ d3k

(2π)3
T ii

1α(k)
E − k2

M + iη
, α = 0, 1, 2 ,

(B.1)
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and concentrate on H0(EM) (the analysis for H1(EM) is
identical). We have

H0(EM) =
∫ Λ d3k

(2π)3

∫ Λ d3k′′

(2π)3
c1

E − k2

M + iη

× (k − k′′)i(k − k′′)j

(k − k′′)2 +m2
π

T0(k′′)
E − k2

M + iη

+
∫ Λ d3k

(2π)3

∫ Λ d3k′′

(2π)3
c1

E − k2

M + iη

× c1(k − k′′)i(k − k′′)k + c2δ
ik

(k − k′′)2 +m2
π

T kj
10 (k

′′)
E − k2

M + iη
. (B.2)

If we solve the equation above iteratively using (4.1.2)
for T0(k) and (4.1.3) for T

ij
10(k), the most divergent term in

the n-th iteration is (super-indices j and k are contracted
with unwritten momenta):

cn+1
1

{
n+2∏
l=1

∫ Λ d3kl

(2π)3

}
1

E − k2
1

M + iη

× (k1 − k2)i(k1 − k2)j

(k1 − k2)2 +m2
π

1

E − k2
2

M + iη
...

...
1

E − k2
n+1
M + iη

(kn+1 − kn+2)k(kn+1 − kn+2)i

(kn+1 − kn+2)2 +m2
π

× 1

E − k2
n+2
M + iη

. (B.3)

Taking into account that the limits E → 0 andm2
π → 0

exist and the flow (4.1.5), the leading behavior in Λ reads:

(−M)n+2cn+1
1

{
n+2∏
l=1

∫ Λd3kl

(2π)3
1
k2

l

}
(k1−k2)i(k1−k2)j

(k1−k2)2
...

...
(kn+1 − kn+2)k(kn+1 − kn+2)i

(kn+1 − kn+2)2
∼ c̄n+1

1 Λ ,

(B.4)

which proves that a0 is a (c̄1-dependent) constant. Notice
also that the integral in (B.4) is bound by (

∫ Λ d3k/k2)n+2.
Let us next identify the subleading behavior. Consider
first E = 0. The derivative of (B.3) with respect to
m2

π at m2
π = 0 has at most a logarithmic singularity

which means that the next-to-leading behavior in Λ is
∼ cn+1

1 Λn−1m2
πLogΛ, which gives rise to O (

1
Λ

)
contribu-

tions in (4.1.9). Terms contributing to d0 in the n-th iter-
ation appear when: i) the c2-proportional term of T0(k) is
iterated through only c1 potential insertions coming from
the second line in (B.2); ii) the equal-to-1 term of T0(k)
is iterated in such a way that a c2 potential from the last
piece appears only once in the iteration. The relevant in-
tegral is obtained by substituting

c1
(kp − kp+1)i(kp − kp+1)j

(kp − kp+1)2 +m2
π

−→ c2 δ
ij

(kp − kp+1)2 +m2
π

(B.5)

in (B.3). In order to get the leading behavior in Λ of this
integral we can set m2

π = 0 in all but the substituted term
above. We have (super-indices j, l, q and k are contracted
with unwritten momenta):

(−M)n+2c2 c
n
1


n∏

l=1\{p,p+1}

∫ Λ d3kl

(2π)3
1
k2

l


× (k1 − k2)i(k1 − k2)j

(k1 − k2)2

...

[ ∫ Λ d3kp

(2π)3

∫ Λ d3kp+1

(2π)3
(kp−1 − kp)l

(kp−1 − kp)2
1
k2

p

× (kp−1−kp) · (kp+1−kp+2)
(kp − kp+1)2 +m2

π

1
k2

p+1

(kp+1−kp+2)q

(kp+1−kp+2)2

]

...
(kn−1 − kn)k(kn−1 − kn)i

(kn−1 − kn)2
∼ c2 c̄

n
1 LogΛ , (B.6)

which proves (with the flow (4.1.1)) that d0 is a constant.
Let us next address the energy-dependent contribution

to (B.1). Notice that any analytic contribution in EM
would show up at O(1/Λ). Hence only non-analytic con-
tributions (like the one in (B.6)) are relevant to us. Let
us then look for non-analytic contributions in EM in the
most divergent diagram in the n-th iteration (B.3). Since
the m2

π → 0 limit exists we can take it and have

cn+1
1

∫ Λ dk1

(2π)3
k2

1

E − k2
1

M + iη
...

∫ Λ dkn+2

(2π)3
k2

n+2

E − k2
n+2
M + iη∫

dΩ1 ...

∫
dΩn+2

(k1 − k2)i(k1 − k2)j

(k1 − k2)2
...

...
(kn+1 − kn+2)k(kn+1 − kn+2)i

(kn+1 − kn+2)2
, (B.7)

where dΩi , i = 1, ..., n + 2 stand for angular integrals.
Since the most singular contribution comes from the re-
gion |kl| ∼ Λ ∀ l, the angular integral will give rise to a
constant (which, furthermore, is bound by (4π)n+2), and
the integrals over |kl| decouple. Hence the leading behav-
ior for small E turns out to be the non-analytic contribu-
tion we are looking for (α0, β0, α̃0 and β̃0 are constants):

∼ cn+1
1

[∫ Λ

dk
k2

E − k2

M + iη

]n+2

∼

cn+1
1

(
α0Λ+ iβ0

√
EM +O

(
1
Λ

))n+2

∼

c̄n+1
1

(
α̃0Λ+ iβ̃0

√
EM +O

(
1
Λ

))
, (B.8)

which proves, in addition, that b0 is a constant. Notice
that a LogΛ-dependence in this term would have been
fatal for renormalization.
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We have then proved the first formula in (4.1.9). The
proof of the second formula is identical. The third formula
is proved by simply noticing that all integrals involved
are at most logarithmically divergent and, those which
actually are, go multiplied by c1 ∼ 1

Λ .

Appendix C. On c1 tuning

In sect. 4, when we focused on proving that a certain be-
havior of the bare constants of the potential as functions
of the cut-off (namely, c0, c1 ∼ Λ−1) would render a fi-
nite T -matrix, only c0 was conveniently fine-tuned. As a
result, the so-computed scattering amplitude lacked from
partial-wave mixing, which is expected due to the second
range tensorial term in the (bare) Hamiltonian. In order
to obtain partial-wave mixing, two possibilities must be
regarded. On the one hand, it could well happen that,
indeed, mixing should not have been considered as LO,
but as a NLO term to be treated perturbatively, the di-
vergences it may cause being absorbed in the usual way
by higher-order local counterterms. This appears to be
consistent with the fact that partial-wave mixing in this
channel amounts only to a few degrees. This treatment
resums the δij-proportional part of OPE. Its SSB term,
now eliminated by the strong suppression of c1, is then re-
covered in a NLO analysis. We have shown how this works
in the sect. 4.2.

Nevertheless, another possibility remains unexamined.
A proper tuning of c1 to a, let us say, non-trivial RG fixed
point, could very well recover mixing at the leading or-
der. So far, the existence of such a fixed point is anything
but evident. Uncovering it or ruling it out requires de-
tailed numerical work which is beyond the scope of this
paper. However, in order to illustrate our point, let us pro-
vide two approximations that exemplify how this tuning
would emerge, how it would affect previous results and to
which extent to achieve this goal we depend on the exact
resolution of our actual system of integral equations.

Let us take in the following k′ = 0 for simplicity. We
will also apply the chiral limit (mπ, c2 → 0) and work
with c̃0 and c̃1 defined in sect. 4.2 . After decomposing
the T -matrix in

T ij(k) = T1(k) δij +

[
kikj − k2

3 δij

k2

]
T2(k) , (C.1)

the following two angular integrals arise in the resolution
of its LS equation:

c̃1

∫
dΩ′′

4π
(k − k′′)i(k − k′′)j − (k−k′′)2

3 δij

(k − k′′)2

−→ c̃1 ω1

(
k

k′′

)
kikj − k2

3 δij

k2
,

c̃1

∫
dΩ′′

4π
(k − k′′)i(k − k′′)k − (k−k′′)2

3 δik

(k − k′′)2

×
[

k′′kk′′j − k′′2
3 δkj

k′′2

]

−→
[
c̃1 ω2

(
k

k′′

)
kikj − k2

3 δij

k2
+ c̃1 ω3

(
k

k′′

)
δij

]
,

(C.2)

with ωi

(
k

k′′
)
, i = 1, 2, 3, as known functions (k = |k|,

k′′ = |k′′|).
At this point we wish to introduce some reasonable ap-

proximation that allows us to transform the non-separable
in k and k′′ functions ωi

(
k

k′′
)
into separable ones. Once

this is achieved, we only need to solve a conventional sys-
tem of equations and check whether, at least within this
approximation, a non-trivial fixed point exists. Obviously,
our approximation should be as compatible as possible
with what we know about the behavior of the full d3k-
integrals. For instance:

∫ Λ dk′′

2π2

k′′2 ωi

(
k

k′′
)

E − k′′2
M + iη

∼ k , i = 1, 2 , (C.3)

that is, both are finite integrals proportional to k in the
limit Λ → ∞. Unfortunately, no separable ωi achieves
this. We shall content ourselves with a simple but still
reasonable starting point that enforces separability. Then,
let us take ω3

(
k

k′′
)
as a constant (:= α3) and substi-

tute ω1,2

(
k

k′′
)
by := α1,2

k
k′′ (α1,2 also being constants).

Although the latter introduces logarithmic divergences
which do not exist in the actual function, it keeps the
correct behavior in k shown in (C.3).

The LS equation takes the form

T ij(k) = c̃0(1 + T1 I0) δij + c̃1

[
kikj − k2

3 δij

k2

]

+c̃1α1

[
kikj− k2

3 δij

k2

]
k T1 I−1

+c̃1α2

[
kikj− k2

3 δij

k2

]
k C + c̃1 α3 δ

ij B , (C.4)

where we have already used that T1(k) becomes momen-
tum independent, as is easily verified through (C.4):

T1 = c̃0(1 + T1 I0) + c̃1 α3 B ,

T2(k) = c̃1(1 + α1 k T1 I−1 + α2 k C) . (C.5)
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The following functions have been introduced:

I0 :=
∫ Λ dk

2π2

k2

E − k2

M + iη
,

B :=
∫ Λ dk

2π2

k2 T2(k)
E − k2

M + iη
,

I−1 =
∫ Λ dk

2π2

k

E − k2

M + iη
,

C =
∫ Λ dk

2π2

k T2(k)
E − k2

M + iη
. (C.6)

A few manipulations allow us to solve for T1 and the
combination α1 T1 I−1 + α2 C:

T1 =
c̃0 + c̃21α3I0 + c̃31α1α3

I1I−1
1−c̃1α2I0

1− c̃0I0 − c̃21α1α3
I1I−1

1−c̃1α2I0

,

α1 T1I−1 + α2 C =
(

c̃1α2I−1

1− c̃1α2I0

)
×

(
c̃0 + c̃21α3I0

)
α1
α2

+ c̃1(1− c̃0I0)

1− c̃0I0 − c̃21α1α3
I1I−1

1−c̃1α2I0

, (C.7)

where a quadratic divergence

I1 :=
∫ Λ dk

2π2

k3

E − k2

M + iη
(C.8)

enters.
It is not difficult to realize that little has been gained:

the only way to get (C.7) finite is by an untuned c̃1,
(1− c̃1α2I0 �= 0), and a tuned c̃0, which force T2(k) to
become trivial again. We have not been able to figure
out any reasonable approximation which produces a non-
trivial T2(k).

Anyway, in order to illustrate the kind of fixed point
we are looking for, let us take another option which, unfor-
tunately, is completely unrealistic. It consists in sending
ω1

(
k

k′′
)
and ω3

(
k

k′′
)
to zero, keeping ω2

(
k

k′′
)
as a mere

constant (:= α2). This presents the main advantage of
producing decoupled equations for T1 and T2:

T1 = c̃0(1 +A) ,

T2 = c̃1(1 + α2 B) , (C.9)

where A := T1 I0 and B = T2 I0. Both are well defined,
provided c̃0(1+A) and c̃1(1+α2 B) are finite. We compute
them multiplying above by 1/(E−k2

M +iη) and integrating.
This produces

c̃0(1 +A) =
1

1
c̃0

− I0

,

c̃1(1 + α2 B) = 1
1
c̃1

− α2 I0

. (C.10)

It is obvious that divergences are absorbed if c̃0, c̃1
behave like Λ−1 and non-trivial results (T1, T2 �= 0) require

1
c̃0

:= −MΛ

2π2
+

1
c̃ r
0 (µ)

,

1
c̃1

:= −MΛα2

2π2
+

1
c̃ r
1 (µ)

. (C.11)

Namely, c̃1 must be fine-tuned (to a non-trivial fixed
point) as desired. Unfortunately, as mentioned before, the
assumptions made for the ωi here are not realistic.

Summarizing, we are rather pessimistic about the pos-
sibility that a non-trivial RG fixed point for both c̃0 and
c̃1 exists, which allows for partial-wave mixing at leading
order.

Appendix D. Proof that no continuous
solution of eq. (18) of [19] exists when
R → 0

Consider eq. (18) of [19],

√
−MV0R cot(

√
−MV0R) =

3
4
+

√
6Mαπ

R
tan

(
2

√
6Mαπ

R
+ φ0

)
, (D.1)

with V0 < 0 , R > 0, φ0 ∈ [−π/2, π/2]. We are interested
in whether continuous solutions V0 = V0(R) exist when
R → 0. Let us define

y :=
√
−MV0R > 0 , x := 2

√
6Mαπ

R
+ φ0 . (D.2)

In terms of these variables we are interested in whether a
continuous solution y = y(x) exists when x → ∞ for the
following equation:

y cot y =
3
4
+

x− φ0

2
tanx . (D.3)

Deriving this equation once one obtains

sin 2y − 2y
2 sin2 y

dy
dx

=
sin 2x+ 2x− 2φ0

4 cos2 x
, (D.4)

which proves that y(x) decreases when x increases for x
large enough. The proof holds everywhere except for the
points x = (n+1/2)π, y = mπ, n,m = 0, 1, 2..., which we
analyze in the following.

When x approaches (n + 1/2)π for a given n, y must
necessarily approach mπ for some m in order for eq. (D.4)
to have a solution. If we write

x =
(
n+

1
2

)
π+δx , y = mπ+δy , δx , δy → 0 , (D.5)
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Fig. 1. In the figure it is shown how the first three branches
of the flow presented in fig. 4 of [19] behave as one approaches
the relevant limit R → 0.

we have, for m �= 0,

δy = − 2m
n+ 1

2 − φ0
π

δx+O(δx2) . (D.6)

Hence, eq. (D.4) admits a continuous solution near the
point x = (n + 1/2)π, provided that we choose m �= 0.
Notice also that y keeps decreasing when x increases in
the neighborhood of this point.

Now, if we increase x from (n + 1/2)π to (n + 3/2)π,
y must decrease from mπ to (m − 1)π, if continuity is
required. By iterating the argument, if we increase x till
(n + m + 1/2)π, continuity requires y to decrease till 0.
However, for x = (n + m + 1/2)π + δx (δx → 0) and
y = δy → 0, eq. (D.4) does not have a solution anymore,
since one obtains

1 +O(δy2) = − (n+m+ 1
2 )π − φ0

2δx
+O(1) . (D.7)

This implies, in particular, that the curves plotted in
fig. 4 of [19] cannot be continuously extended below
R ∼ 0.25 fm, R ∼ 0.13 fm and R ∼ 0.09 fm, respectively,
as is shown in fig. 1.

In conclusion, no continuous solution y = y(x) of
eq. (D.4) (and hence of eq. (D.1)) exists for x → ∞
(R → 0). If continuity is given up, an infinite number
of solutions exist, none of them being compatible with a
RG flow, at least in the standard sense. Note also that
this situation is qualitatively different from a limit cycle
behavior [28], which is realized, for instance, in three-body
systems [29]. There the flows are oscillating and discontin-
uous but uniquely defined, no matter how large the cut-off
is. It is interesting to notice, however, that for any fixed
R arbitrarily small there are always branches for which R
has an image (by choosing m above sufficiently large).
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